Resting heart rate predicts cardiac autonomic modulation during passive head-up tilt in subjects without cardiovascular diseases

Scand Cardiovasc J. 2022 Dec;56(1):138-147. doi: 10.1080/14017431.2022.2079713.

Abstract

Background Resting heart rate (HR) and its variability (HRV) reflects the cardiac sympathovagal balance that is stimulated by head-up tilting. HRV is influenced by the level of HR, but how much HRV offers additional information about cardiac autonomic tone than HR alone remains unresolved. We examined the relation of resting HR with HRV during head-up tilt. Methods. Hemodynamics of 569 subjects without known cardiovascular diseases and medications with direct cardiovascular effects were recorded using whole-body impedance cardiography, radial pulse wave analysis, and electrocardiography-based HRV analysis during passive head-up tilt. Results. Higher low frequency to the high-frequency ratio (LF/HF) of HRV (reflecting sympathovagal balance) was associated with higher HR in supine (p < .05, both linear regression analysis and variance analysis comparing HR tertiles) and upright postures (p < .001, linear regression analysis). The association of HR with HRV during tilt-testing remained significant when the HR dependence of HRV was mathematically weakened by dividing the HRV power spectra with the fourth power of the average RR-interval. Conclusion. Higher resting HR is related to higher LF/HF both supine and upright, reflecting elevated sympathetic influence on cardiac autonomic modulation. Lower resting HR is associated with lower resting LF/HF, while the differences in LF/HF between the HR tertiles were minor during head-up tilt, suggesting a greater change in cardiac sympathovagal balance in response to upright posture in those with lowest resting HR. Altogether, resting HR well predicts HRV levels during head-up tilt.Trial registration: Clinicaltrialsregister.eu 2006-002065-39, first registered 5 May 2006. ClinicalTrials.gov NCT01742702, first registered 5 December 2012.

Keywords: Autonomic nervous system; heart rate; heart rate variability; hemodynamics; passive tilt-test.

Publication types

  • Clinical Study

MeSH terms

  • Autonomic Nervous System
  • Blood Pressure / physiology
  • Cardiovascular Diseases*
  • Heart
  • Heart Rate
  • Humans

Associated data

  • ClinicalTrials.gov/NCT01742702