The design of a high-voltage, long-pulse width, flat-top compensation pulse generator based on metal oxide varistors

Rev Sci Instrum. 2022 May 1;93(5):054704. doi: 10.1063/5.0071272.

Abstract

In recent years, the pulse forming technology based on metal oxide varistors (MOVs) has been verified to be an effective way to generate high-voltage quasi-square pulses. Due to the limited varistor voltage of a single MOV brick, multiple MOV bricks connected in series are required to stabilize a pulse with high amplitude (larger than hundreds of kV), which leads to the rise of the series inductance of the MOV branch and the flat-top droop in the output waveform. This paper provides two solutions to reduce the influence of the MOV branch inductance on output waveforms. One is that a coaxial evolute structure of the MOV bricks connected in series is designed, which can not only improve the insulation capacity but also reduce the branch inductance. Another is that a flat-top compensation scheme named "PFN-MOV" (Pulse Forming Network) is proposed, which adds an LC filtering branch to shape the signal into a flat-top rising wave with ripple and then offsets the flat-top droop caused by the inductance of the MOV branch. Based on the above ideas, a high-voltage, long-pulse width, flat-top compensation pulse generator is designed and tested, and a quasi-square pulse with voltage amplitude of more than 500 kV, pulse width greater than 800 ns, rise time of less than 50 ns, and flat top of about 600 ns is obtained experimentally. This MOV based generator has the advantage of simple design, compact construction, and better flat top, which is promising to be used as a compact long-pulse driver in many fields, such as high-current accelerator, industrial dedusting, medical sterilization, and cancer treatment.