Genetic loci associated with freezing tolerance in a European rapeseed (Brassica napus L.) diversity panel identified by genome-wide association mapping

Plant Direct. 2022 May 25;6(5):e405. doi: 10.1002/pld3.405. eCollection 2022 May.

Abstract

Winter biotypes of rapeseed (Brassica napus L.) require a vernalization treatment to enter the reproductive phase and generally produce greater yields than spring rapeseed. To find genetic loci associated with freezing tolerance in rapeseed, we first performed genotyping-by-sequencing (GBS) on a diversity panel consisting of 222 rapeseed accessions originating primarily from Europe, which identified 69,554 high-quality single-nucleotide polymorphisms (SNPs). Model-based cluster analysis suggested that there were eight subgroups. The diversity panel was then phenotyped for freezing survival (visual damage and Fv/Fo and Fv/Fm) after 2 months of cold acclimation (5°C) and a freezing treatment (-15°C for 4 h). The genotypic and phenotypic data for each accession in the rapeseed diversity panel was then used to conduct a genome-wide association study (GWAS). GWAS results showed that 14 significant markers were mapped to seven chromosomes for the phenotypes scored. Twenty-four candidate genes located within the mapped loci were identified as previously associated with lipid, photosynthesis, flowering, ubiquitination, and cytochrome P450 in rapeseed or other plant species.

Keywords: chlorophyll fluorescence; cold acclimation; freezing survival; freezing tolerance; genome wide association study; rapeseed (Brassica napus L.).