Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review

Environ Microbiol. 2022 Jul;24(7):2857-2881. doi: 10.1111/1462-2920.16034. Epub 2022 May 30.

Abstract

Post-translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co-localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are 'turned off' under laboratory condition. Efforts have been made to 'turn on' these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non-histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspergillus* / genetics
  • Aspergillus* / metabolism
  • Fungi / genetics
  • Multigene Family*
  • Protein Processing, Post-Translational
  • Secondary Metabolism / genetics