Identification of genome edited cells using CRISPRnano

Nucleic Acids Res. 2022 Jul 5;50(W1):W199-W203. doi: 10.1093/nar/gkac440.

Abstract

Genome engineering-induced cleavage sites can be resolved by non-homologous end joining (NHEJ) or homology-directed repair (HDR). Identifying genetically modified clones at the target locus remains an intensive and laborious task. Different workflows and software that rely on deep sequencing data have been developed to detect and quantify targeted mutagenesis. Nevertheless, these pipelines require high-quality reads generated by Next Generation Sequencing (NGS) platforms. Here, we have developed a robust, versatile, and easy-to-use computational webserver named CRISPRnano (www.CRISPRnano.de) that enables the analysis of low-quality reads generated by affordable and portable sequencers including Oxford Nanopore Technologies (ONT) devices. CRISPRnano allows fast and accurate identification, quantification, and visualization of genetically modified cell lines, it is compatible with NGS and ONT sequencing reads, and it can be used without an internet connection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems*
  • Cell Line
  • Computers
  • Data Visualization
  • Gene Editing* / methods
  • Genome* / genetics
  • High-Throughput Nucleotide Sequencing* / methods
  • Internet
  • Mutagenesis, Site-Directed
  • Nanopores*
  • Sequence Analysis, DNA* / methods
  • Software*
  • Time Factors
  • Whole Genome Sequencing
  • Workflow