White-light emission in Yb3+/Er3+/Tm3+- and Yb3+/Er3+/Tm3+/Ho3+-doped α-NiMoO4nanoparticles

Nanotechnology. 2022 Jul 8;33(39). doi: 10.1088/1361-6528/ac74cd.

Abstract

Yb3+/Er3+/Tm3+- and Yb3+/Er3+/Tm3+/Ho3+-dopedα-NiMoO4nanoparticles were synthesized using a microwave hydrothermal method and studied for white-light emission under 980 nm laser diode excitation. White upconversion (UC) light was successfully obtained with the appropriate control of blue, green, and red emissions by successfully tuning the Er3+and Ho3+concentrations in Yb3+/Er3+/Tm3+- and Yb3+/Er3+/Tm3+/Ho3+-dopedα-NiMoO4, respectively. In addition, the white color emission was shown by the CIE chromaticity coordinates of samples. The energy transfer mechanisms are explained in detail based on the emission spectra and pump power density-dependent UC luminescence intensity in rare earth (Yb3+/Er3+/Tm3+and Yb3+/Er3+/Tm3+/Ho3+)-dopedα-NiMoO4nanoparticles. The results indicate that Yb3+/Er3+/Tm3+- and Yb3+/Er3+/Tm3+/Ho3+-dopedα-NiMoO4nanoparticles can be good candidates for white-light devices.

Keywords: nanoparticles; rare earth doping; upconversion; white light; α-NiMoO4.