Ultraflexible PEDOT:PSS/Helical Carbon Nanotubes Film for All-in-One Photothermoelectric Conversion

ACS Appl Mater Interfaces. 2022 May 31. doi: 10.1021/acsami.2c05875. Online ahead of print.

Abstract

Photothermoelectric (PTE) conversion can achieve the recovery of low-quality light or heat efficiently. Much effort has been devoted to the exploitation of the inorganic heterogeneous asynchronous (separate) PTE conversion system. Here, a full organic PTE film with a pseudobilayer architecture (PBA) according to the homogeneous synchronous (all-in-one) PTE conversion hypothesis was prepared via successive drop-casting a PEDOT:PSS/helical carbon nanotube (HCNT) mixture and PEDOT:PSS onto a vacuum ultraviolet treated substrate. Our results prove that the heptagon-pentagon pairs embedded in HCNTs promote a denser arrangement of the molecular chains of PEDOT, which enhances the crystallinity and affects the thermoelectric properties. The weak connection and hollow structure of HCNTs inhibit the dissipation of heat, and the zT value of the film reaches over 0.01. The PBA film shows better photothermal conversion performance than a neat PEDOT:PSS film and stably generates a temperature difference of over 25.68 °C without external cooling. A flexible PTE chip demo was manufactured, and the ideal open-circuit voltage (simulated via COMSOL) of that reaches over 1.5 mV under weak NIR stimulation (83.12 mW/cm2), which is the best value reported for an organic all-in-one PTE device, and the real maximum output power reaches 2.55 nW (166.01 mW/cm2). The chip has incredible ultraflexibility, and its inner resistance changes less than 1.42% after 10000 bending cycles and displays ultrahigh stability (similarity >90%) in a continuous periodic output. Our work fills the deficit of homogeneous synchronous PTE research for a PEDOT:PSS composite and is a preliminary attempt in an ultraflexible integrated all-in-one PTE chip design.

Keywords: finite element analysis; helical carbon nanotubes; photothermoelectric; thermoelectric; ultraflexible nanogenerator.