Ultrahigh Peroxymonosulfate Utilization Efficiency over CuO Nanosheets via Heterogeneous Cu(III) Formation and Preferential Electron Transfer during Degradation of Phenols

Environ Sci Technol. 2022 Jun 21;56(12):8984-8992. doi: 10.1021/acs.est.2c01968. Epub 2022 May 31.

Abstract

In persulfate activation by copper-based catalysts, high-valent copper (Cu(III)) is an overlooked reactive intermediate that contributes to efficient persulfate utilization and organic pollutant removal. However, the mechanisms underlying heterogeneous activation and enhanced persulfate utilization are not fully understood. Here, copper oxide (CuO) nanosheets (synthesized with a facile precipitation method) exhibited high catalytic activity for peroxymonosulfate (PMS) activation with 100% 4-chlorophenol (4-CP) degradation within 3 min. Evidence for the critical role of surface-associated Cu(III) on PMS activation and 4-CP degradation over a wide pH range (pH 3-10) was obtained using in situ Raman spectroscopy, electron paramagnetic resonance, and quenching tests. Cu(III) directly oxidized 4-CP and other phenolic pollutants, with rate constants inversely proportional to their ionization potentials. Cu(III) preferentially oxidizes 4-CP rather than react with two PMS molecules to generate one molecule of 1O2, thus minimizing this less efficient PMS utilization pathway. Accordingly, a much higher PMS utilization efficiency (77% of electrons accepted by PMS ascribed to 4-CP mineralization) was obtained with CuO/PMS than with a radical pathway-dominated Co3O4/PMS system (27%) or with the 1O2 pathway-dominated α-MnO2/PMS system (26%). Overall, these results highlight the potential benefits of PMS activation via heterogeneous high-valent copper oxidation and offer mechanistic insight into ultrahigh PMS utilization efficiency for organic pollutant removal.

Keywords: heterogeneous catalysis; high-valent copper; oxidant utilization efficiency; persulfate activation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cobalt
  • Copper / chemistry
  • Electrons
  • Environmental Pollutants*
  • Manganese Compounds
  • Oxides
  • Peroxides / chemistry
  • Phenols
  • Water Pollutants, Chemical* / chemistry

Substances

  • Environmental Pollutants
  • Manganese Compounds
  • Oxides
  • Peroxides
  • Phenols
  • Water Pollutants, Chemical
  • cobalt tetraoxide
  • peroxymonosulfate
  • Cobalt
  • Copper
  • cupric oxide