Paper-Based Bipolar Electrode Electrochemiluminescence Platform Combined with Pencil-Drawing Trace for the Detection of M.SssI Methyltransferase

Anal Chem. 2022 Jun 14;94(23):8327-8334. doi: 10.1021/acs.analchem.2c00803. Epub 2022 May 30.

Abstract

Herein, a hand-drawing paper-based bipolar electrode (BPE) electrochemiluminescence (ECL) platform for M.SssI methyltransferase (M.SssI MTase) assay was proposed via employing high electrocatalytic Pt@CeO2 as an ECL co-reaction accelerator and pencil-drawing graphite electric circuits as wires and electrodes. Notably, the introduction of pencil-drawing trace not only simplified the manufacturing process but also reduced the cost and saved fabricating time. Meanwhile, Pt@CeO2 with good electrocatalytic activity and satisfactory chemical stability was used at the anode of the closed BPE-ECL device to accelerate the oxidation rate of uric acid. Due to the balanced charges of the bipolar electrode, the ECL response of the MnS: CdS@ZnS/S2O82- system emitted on the cathode was enhanced. In situ growth of gold nanoparticles in the two electrode areas was convenient for DNA immobilization. With the above points in mind, the specific DNA double strands functionalized via Pt@CeO2 were employed to identify M.SssI MTase. The unmethylated DNA double strands were cut by HpaII endonuclease, resulting in the quenching of the ECL signal. Under the optimal conditions, sensitive detection of M.SssI MTase in a wide linear range of 0.01-100 U·mL-1 with a satisfactory detection limit of 0.008 U·mL-1 was realized. The reliable and versatile BPE-ECL tool for the determination of M.SssI MTase with easy-to-operate pencil-drawing traces and independent solution systems provides a new opportunity to develop paper-based devices applied in early disease diagnosis and pathogenesis research.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques* / methods
  • DNA
  • DNA-Cytosine Methylases
  • Electrochemical Techniques / methods
  • Electrodes
  • Gold
  • Luminescent Measurements / methods
  • Metal Nanoparticles*
  • Methyltransferases

Substances

  • Gold
  • DNA
  • DNA modification methylase SssI
  • DNA-Cytosine Methylases
  • Methyltransferases