Effects of Water Content of the Mixed Solvent on the Single-Molecule Mechanics of Amylose

ACS Macro Lett. 2018 Jun 19;7(6):672-676. doi: 10.1021/acsmacrolett.8b00375. Epub 2018 May 23.

Abstract

It is generally recognized that water is deeply involved in the structures and functions of DNA and proteins. For polysaccharides, however, the role of water remains unclear. Due to the force-induced conformational transition of the sugar rings, a fingerprint plateau can be observed in the single-chain force-extension (F-E) curves of amylose and some other polysaccharides in aqueous solutions. In this study, the effects of water content of the mixed solvents on the fingerprint plateau of amylose are explored by single-molecule AFM. The experimental results obtained in a series of water/alcohol mixed solvents clearly show that both the appearance and the fingerprint plateau height in the F-E curves of amylose are dependent on the water content. Since water is a good solvent for amylose but alcohols are not, the higher water content of a mixed solvent corresponds to a better solvent quality. Thus, the observed results can be associated with the solvent quality to amylose. The present study implies that water is not only a solvent but also an active constituent in the amylose solution.