Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform

Sensors (Basel). 2022 May 17;22(10):3791. doi: 10.3390/s22103791.

Abstract

In this work, multiferroic cantilevers comprise a layer of a magnetoactive elastomer (MAE) and a commercially available piezoelectric polymer-based vibration sensor. The structures are fixed at one end in the horizontal plane and the magnetic field is applied vertically. First, the magnetoelectric (ME) response to uniform, triangle-wave magnetic fields with five different slew rates is investigated experimentally. Time and field dependences of the generated voltage, electric charge, and observed mechanical deflection are obtained and compared for four different thicknesses of the MAE layer. The ME responses to triangular and sinusoidal wave excitations are examined in contrast. Second, the ME response at low frequencies (≤3 Hz) is studied by the standard method of harmonic magnetic field modulation. The highest ME coupling coefficient is observed in the bias magnetic field strength of ≈73 kA/m and it is estimated to be about 3.3 ns/m (ME voltage coefficient ≈ 25 V/A) at theoretically vanishing modulation frequency (f→0 Hz). Presented results demonstrate that the investigated heterostructures are promising for applications as magnetic-field sensors and energy harvesting devices.

Keywords: direct magnetoelectric effect; magnetic field sensing; magnetoactive elastomer; multilayer cantilever; piezoelectric polymer.