Connection Confinement of Bolted Fibre-Reinforced Polymer Bamboo Composite

Polymers (Basel). 2022 May 17;14(10):2051. doi: 10.3390/polym14102051.

Abstract

Parallel strand bamboo is a composite material that demonstrates high strength and low variability compared to other timber materials. However, its use in bolted connections is limited by a tendency to fail in shear-out mode. One promising technique to prevent failure is the method of confinement, whereby the composite connection is confined laterally, inducing a compressive force perpendicular to the composite fibres, which increases the shear strength in the loading process. This paper investigates the confinement method and its effect on parallel strand bamboo connections' strength and failure mechanisms through experimental tests and ANSYS simulation methods. It was discovered that bolted connection confinement reduces the propensity of shear-out failure by counteracting shear stresses. A comparison of graphical results revealed that confinement increased the ultimate tensile capacity of parallel strand bamboo bolted connections by up to 26%. Confinement also improved the consistency of the connection's mechanical properties throughout the loading process. These findings assist in refining and optimising practical applications of parallel strand bamboo connections by using the method of connection confinement.

Keywords: bamboo; bolted connection; composite; confinement; damage; failure; shear-out; strength.

Grants and funding

This research received no external funding.