Highly Stable, Graphene-Wrapped, Petal-like, Gap-Enhanced Raman Tags

Nanomaterials (Basel). 2022 May 10;12(10):1626. doi: 10.3390/nano12101626.

Abstract

Gap-enhanced Raman tags (GERTs) were widely used in cell or biological tissue imaging due to their narrow spectral linewidth, weak photobleaching effect, and low biological matrix interference. Here, we reported a new kind of graphene-wrapped, petal-like, gap-enhanced Raman tags (GP-GERTs). The 4-Nitrobenzenethiol (4-NBT) Raman reporters were embedded in the petal-like nanogap, and graphene was wrapped on the surface of the petal-like, gap-enhanced Raman tags. Finite-difference time-domain (FDTD) simulations and Raman experimental studies jointly reveal the Raman enhancement mechanism of graphene. The SERS enhancement of GP-GERTs is jointly determined by the petal-like "interstitial hotspots" and electron transfer between graphene and 4-NBT molecules, and the total Raman enhancement factor (EF) can reach 1010. Mesoporous silica was grown on the surface of GP-GERTs by tetraethyl orthosilicate hydrolysis to obtain Raman tags of MS-GP-GERTs. Raman tag stability experiments showed that: MS-GP-GERTs not only can maintain the signal stability in aqueous solutions of different pH values (from 3 to 12) and simulated the physiological environment (up to 72 h), but it can also stably enhance the signal of different Raman molecules. These highly stable, high-signal-intensity nanotags show great potential for SERS-based bioimaging and multicolor imaging.

Keywords: Raman-enhanced mechanism; gap-enhanced Raman tags; graphene; stability.

Grants and funding

This research was funded by Tianjin Key R & D Program (No. 19YFZCSY00250).