Triallyl Isocyanurate as an Efficient Electrolyte Additive for Layered Oxide Cathode Material-Based Lithium-Ion Batteries with Improved Stability under High-Voltage

Molecules. 2022 May 12;27(10):3107. doi: 10.3390/molecules27103107.

Abstract

In this study, a new electrolyte additive 1,3,5-tri-2-propenyl-1,3,5-triazine-2,4,6-(1H, 3H, 5H)-trione (TAIC) for lithium-ion batteries is reported. The additive is introduced as a novel electrolyte additive to enhance electrochemical performances of layered lithium nickel cobalt manganese oxide (NCM) and lithium cobalt oxide (LiCoO2) cathodes, especially under a higher working voltage. Encouragingly, we found protective films would be formed on the cathode surface by the electrochemical oxidation, and the stability of the cathode material-electrolyte interface was greatly promoted. By adding 0.5 wt.% of TAIC into the electrolyte, the battery exhibited outstanding performances. The thickness swelling decreased to about 6% after storage at 85 °C for 24 h, while the capacity retention of cycle-life performances under high temperature of 45 °C after the 600th cycle increased 10% in comparison with the batteries without TAIC. Due to its specific function, the additive can be used in high energy density and high voltage lithium-ion battery systems.

Keywords: improved interface stability; multifunctional electrolyte additive; triallyl isocyanurate.

Grants and funding

This research was funded by the Key-Area Research and Development Program of Guangdong Province, China (grant number: 2020B090919001).