Atomization Characteristics of Hydrogen Peroxide Solutions in Electrostatic Field

Micromachines (Basel). 2022 May 13;13(5):771. doi: 10.3390/mi13050771.

Abstract

Hydrogen peroxide (H2O2) can be considered as a sterilant or a green propellant. For a common use in industrial application, spray is an effective method to form fine H2O2 droplets. In this paper, electrostatic atomization based on the configuration of needle ring electrodes is proposed to produce H2O2 spray by minimizing its effective surface tension. The breakup performances of H2O2 ligaments can be improved by increasing the electric field intensity, reducing the nozzle size, and adjusting suitable volume flow rate. The smallest average diameter of breakup droplets for 35 wt. % concentration H2O2 solution reached 92.8 μm under optimum operation conditions. The H2O2 concentration significantly influenced the breakup performance owing to the concentration effect on comprehensive physical properties such as density, surface tension, viscosity, and permittivity. The average diameters of breakup droplets decreased with decreasing H2O2 concentration. At 8 wt. % concentration, the average breakup droplet diameter was reduced to 67.4 μm. Finally, electrostatic atomization mechanism of H2O2 solution was analyzed by calculating dimensionless parameters of Re, We, and Oh numbers with the combination of the operation conditions and physical properties for in-depth understanding the breakup behaviors. The calculation showed that the minimum average diameter of breakup droplets was obtained at 8 wt. % concentration at the investigated range of H2O2 concentration, which kept in agreement with the experimental results.

Keywords: concentration effect; electrostatic atomization; hydrogen peroxide; surface tension; viscosity.