Effect of Sintering Temperature and Polarization on the Dielectric and Electrical Properties of La0.9Sr0.1MnO3 Manganite in Alternating Current

Materials (Basel). 2022 May 20;15(10):3683. doi: 10.3390/ma15103683.

Abstract

The electrical characterization ofa La0.9Sr0.1MnO3 compound sintered at 800, 1000 and 1200 °C was investigated by means of the impedance-spectroscopy technique. As the results, the experimental conductivity spectra were explained in terms of the power law. The AC-conductivity study reveals the contributions of different conduction mechanisms. Indeed, the variation in the frequency exponents ('s1' and 's2') as a function of the temperature confirms the thermal activation of the conduction process in the system. It proves, equally, that the transport properties are governed by the non-small-polaron-tunneling and the correlated-barrier-hopping mechanisms. Moreover, the values of the frequency exponents increase under the sintering-temperature (TS) effect. Such an evolution may be explained energetically. The jump relaxation model was used to explain the electrical conductivity in the dispersive region, as well as the frequency-exponent values by ionic conductivity. Under electrical polarization with applied DC biases of Vp = 0.1 and 2 V at room temperature, the results show the significant enhancement of the electrical conductivity. In addition, the dielectric study reveals the evident presence of dielectric relaxation. Under the sintering-temperature effect, the dielectric constant increases enormously. Indeed, the temperature dependence of the dielectric constant is well fitted by the modified Curie-Weiss law. Thus, the deduced values of the parameter (γ) confirm the relaxor character and prove the diffuse phase transition of our material. Of note is the high dielectric-permittivity magnitude, which indicates that the material is promising for microelectronic devices.

Keywords: La0.9Sr0.1MnO3; electrical conductivity; hopping; polarization and dielectric properties; sintering temperature; tunneling.

Grants and funding

This research was funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University, grant number RG-21-09-66.