Investigation of the Shrinkage and Air Permeability of Woolen Blankets and Blankets Made with Regenerated Wool

Materials (Basel). 2022 May 18;15(10):3596. doi: 10.3390/ma15103596.

Abstract

The aim of this article was to compare the shrinkage and air permeability properties of woolen fabrics and fabrics with regenerated wool woven with different weaves for establishing the suitability of regenerated wool for blankets. Two series of products with yarns of different raw materials were woven. One group of fabrics was woven with regenerated woolen yarn in the weft and woolen yarn in the warp. The other group of fabrics was woven only from 100% woolen yarns. The shrinkage in the directions of the warp and the weft and the air permeability of the fabrics with regenerated wool and 100% woolen fabrics with different weaves were investigated. The shrinkage in the directions of the warp and the weft in the fabrics with regenerated wool in the weft and 100% woolen fabrics depended on the float length in the weave. When the length of the weave increased, the shrinkage also increased. The air permeability value changed depending on the number of intersections and the float length. The fabrics with regenerated wool in the direction of the weft had higher air permeability. The Two-way analysis of variance (ANOVA) results showed that the weave influenced the shrinkage in the directions of the weft and warp, but the raw material had no influence on the shrinkage. The weave did not influence the air permeability, in contrast to the raw material. The shrinkage in the directions of the warp and weft and the air permeability did not depend on the interrelationships of the weave group and the raw material of the fabric.

Keywords: air permeability; blanket; fabric with regenerated wool; shrinkage; woolen fabric.

Grants and funding

This research received no external funding.