AtERF71/ HRE2, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Both Positive and Negative Cis-Regulatory Elements in Its Promoter Region Involved in Hypoxia and Salt Stress Responses

Int J Mol Sci. 2022 May 10;23(10):5310. doi: 10.3390/ijms23105310.

Abstract

In the signal transduction network, from the perception of stress signals to stress-responsive gene expression, various transcription factors and cis-regulatory elements in stress-responsive promoters coordinate plant adaptation to abiotic stresses. Among the AP2/ERF transcription factor family, group VII ERF (ERF-VII) genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/HRE2, are known to be involved in the response to hypoxia in Arabidopsis. Notably, HRE2 has been reported to be involved in responses to hypoxia and osmotic stress. In this study, we dissected HRE2 promoter to identify hypoxia- and salt stress-responsive region(s). The analysis of the promoter deletion series of HRE2 using firefly luciferase and GUS as reporter genes indicated that the -116 to -2 region is responsible for both hypoxia and salt stress responses. Using yeast one-hybrid screening, we isolated HAT22/ABIG1, a member of the HD-Zip II subfamily, which binds to the -116 to -2 region of HRE2 promoter. Interestingly, HAT22/ABIG1 repressed the transcription of HRE2 via the EAR motif located in the N-terminal region of HAT22/ABIG1. HAT22/ABIG1 bound to the 5'-AATGATA-3' sequence, HD-Zip II-binding-like cis-regulatory element, in the -116 to -2 region of HRE2 promoter. Our findings demonstrate that the -116 to -2 region of HRE2 promoter contains both positive and negative cis-regulatory elements, which may regulate the expression of HRE2 in responses to hypoxia and salt stress and that HAT22/ABIG1 negatively regulates HRE2 transcription by binding to the HD-Zip II-binding-like element in the promoter region.

Keywords: Arabidopsis; ERF-VII; HAT22/ABIG1; HD-Zip II; HRE2; cis-regulatory element; hypoxia; salt stress.

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Homeodomain Proteins
  • Hypoxia / genetics
  • Promoter Regions, Genetic
  • Repressor Proteins / genetics
  • Salt Stress / genetics
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • APETALA2 protein, Arabidopsis
  • Arabidopsis Proteins
  • ERF71 protein, Arabidopsis
  • Homeodomain Proteins
  • Repressor Proteins
  • Transcription Factors