Deep Splicer: A CNN Model for Splice Site Prediction in Genetic Sequences

Genes (Basel). 2022 May 19;13(5):907. doi: 10.3390/genes13050907.

Abstract

Many living organisms have DNA in their cells that is responsible for their biological features. DNA is an organic molecule of two complementary strands of four different nucleotides wound up in a double helix. These nucleotides are adenine (A), thymine (T), guanine (G), and cytosine (C). Genes are DNA sequences containing the information to synthesize proteins. The genes of higher eukaryotic organisms contain coding sequences, known as exons and non-coding sequences, known as introns, which are removed on splice sites after the DNA is transcribed into RNA. Genome annotation is the process of identifying the location of coding regions and determining their function. This process is fundamental for understanding gene structure; however, it is time-consuming and expensive when done by biochemical methods. With technological advances, splice site detection can be done computationally. Although various software tools have been developed to predict splice sites, they need to improve accuracy and reduce false-positive rates. The main goal of this research was to generate Deep Splicer, a deep learning model to identify splice sites in the genomes of humans and other species. This model has good performance metrics and a lower false-positive rate than the currently existing tools. Deep Splicer achieved an accuracy between 93.55% and 99.66% on the genetic sequences of different organisms, while Splice2Deep, another splice site detection tool, had an accuracy between 90.52% and 98.08%. Splice2Deep surpassed Deep Splicer on the accuracy obtained after evaluating C. elegans genomic sequences (97.88% vs. 93.62%) and A. thaliana (95.40% vs. 94.93%); however, Deep Splicer's accuracy was better for H. sapiens (98.94% vs. 97.15%) and D. melanogaster (97.14% vs. 92.30%). The rate of false positives was 0.11% for human genetic sequences and 0.25% for other species' genetic sequences. Another splice prediction tool, Splice Finder, had between 1% and 3% of false positives for human sequences, while other species' sequences had around 4% and 10%.

Keywords: CNN; deep learning models; genetic sequences; splice sites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans* / genetics
  • DNA / genetics
  • Drosophila melanogaster* / genetics
  • Humans
  • Nucleotides
  • Software

Substances

  • Nucleotides
  • DNA

Grants and funding

This research received funding through a donation of a Tesla P100 by the NVIDIA Corporation for the computational resources offered by the Data Analysis and Supercomputing Center (CADS).