A Survey on the Role of Artificial Intelligence in Biobanking Studies: A Systematic Review

Diagnostics (Basel). 2022 May 9;12(5):1179. doi: 10.3390/diagnostics12051179.

Abstract

Introduction: In biobanks, participants' biological samples are stored for future research. The application of artificial intelligence (AI) involves the analysis of data and the prediction of any pathological outcomes. In AI, models are used to diagnose diseases as well as classify and predict disease risks. Our research analyzed AI's role in the development of biobanks in the healthcare industry, systematically. Methods: The literature search was conducted using three digital reference databases, namely PubMed, CINAHL, and WoS. Guidelines for preferred reporting elements for systematic reviews and meta-analyses (PRISMA)-2020 in conducting the systematic review were followed. The search terms included "biobanks", "AI", "machine learning", and "deep learning", as well as combinations such as "biobanks with AI", "deep learning in the biobanking field", and "recent advances in biobanking". Only English-language papers were included in the study, and to assess the quality of selected works, the Newcastle-Ottawa scale (NOS) was used. The good quality range (NOS ≥ 7) is only considered for further review. Results: A literature analysis of the above entries resulted in 239 studies. Based on their relevance to the study's goal, research characteristics, and NOS criteria, we included 18 articles for reviewing. In the last decade, biobanks and artificial intelligence have had a relatively large impact on the medical system. Interestingly, UK biobanks account for the highest percentage of high-quality works, followed by Qatar, South Korea, Singapore, Japan, and Denmark. Conclusions: Translational bioinformatics probably represent a future leader in precision medicine. AI and machine learning applications to biobanking research may contribute to the development of biobanks for the utility of health services and citizens.

Keywords: artificial intelligence; biobanks; biomarkers; machine learning; precision medicine.

Publication types

  • Review