The Cost of Imagined Actions in a Reward-Valuation Task

Brain Sci. 2022 Apr 29;12(5):582. doi: 10.3390/brainsci12050582.

Abstract

Growing evidence suggests that humans and other animals assign value to a stimulus based not only on its inherent rewarding properties, but also on the costs of the action required to obtain it, such as the cost of time. Here, we examined whether such cost also occurs for mentally simulated actions. Healthy volunteers indicated their subjective value for snack foods while the time to imagine performing the action to obtain the different stimuli was manipulated. In each trial, the picture of one food item and a home position connected through a path were displayed on a computer screen. The path could be either large or thin. Participants first rated the stimulus, and then imagined moving the mouse cursor along the path from the starting position to the food location. They reported the onset and offset of the imagined movements with a button press. Two main results emerged. First, imagery times were significantly longer for the thin than the large path. Second, participants liked significantly less the snack foods associated with the thin path (i.e., with longer imagery time), possibly because the passage of time strictly associated with action imagery discounts the value of the reward. Importantly, such effects were absent in a control group of participants who performed an identical valuation task, except that no action imagery was required. Our findings hint at the idea that imagined actions, like real actions, carry a cost that affects deeply how people assign value to the stimuli in their environment.

Keywords: Fitts’ law; delay discounting; effort discounting; mental simulation; motor imagery; reward value; visual imagery.