Evaluation of applying space-variant resolution modeling to attenuation correction in PET

Biomed Phys Eng Express. 2022 May 27. doi: 10.1088/2057-1976/ac741c. Online ahead of print.

Abstract

Attenuation correction aims to recover the underestimated tracer uptake and improve the image contrast recovery in positron emission tomography (PET). However, traditional ray-tracing-based projection of attenuation maps is inaccurate as some physical effects are not considered, such as finite crystal size, inter-crystal penetration and inter-crystal scatter. In this study, we evaluated the effects of applying resolution modeling (RM) to attenuation correction by implementing space-variant RM to complement physical effects which are usually omitted in the traditional projection model. We verified this method on a brain PET scanner developed by our group, in both Monte Carlo simulation and real-world data, in comparison with space-invariant Gaussian RM, average-depth-of-interaction, and multi-ray tracing methods. The results indicate that the space-variant RM is superior in terms of artifacts reduction and contrast recovery.

Keywords: PET; attenuation correction; projection; resolution modeling.