Three-Dimensional Droplet Manipulation with Electrostatic Levitation

Anal Chem. 2022 Jun 14;94(23):8217-8225. doi: 10.1021/acs.analchem.2c00178. Epub 2022 May 27.

Abstract

An active and precise method for three-dimensional (3D) droplet manipulation is introduced. By modulating the local electrostatic force acting on droplets in carrier oil between needle plate electrodes, the vertical motion of droplets can be controlled, including the droplet levitation at the interface between the carrier oil and the air. Levitated droplets can be translated horizontally with high efficiency by the motion of the needle electrode. With controllable local deformation on the flexible plate electrode, selective manipulation can be realized for multiple droplets. Applying the manipulation method proposed, a platform is built and various droplet handling, such as transport, merging, and mixing, is performed effectively. Complex droplet transport trajectories are achieved by moving the needle electrode. The droplet transport velocity can reach up to 37 mm/s. The introduced method has fundamental advantages of avoiding cross-contamination between droplets, enhancing the flexibility, eliminating the transport track constraint, and lowering costs with straightforward and precise droplet manipulation.