Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration

ACS Macro Lett. 2019 Jul 16;8(7):859-864. doi: 10.1021/acsmacrolett.9b00405. Epub 2019 Jun 25.

Abstract

Silica particles with grafted poly(methyl methacrylate) brushes, SiO2-g-PMMA, were prepared via activator regeneration by electron transfer (ARGET) atom transfer radical polymerization (ATRP). The grafting density and dispersity of the polymer brushes was tuned by the initial ATRP catalyst concentration ([CuII/L]0). Sparsely grafted particle brushes, which also displayed an anisotropic string-like structure in TEM images, were obtained at very low catalyst concentrations, [CuII/L]0 < 1 ppm. The effect of the initial catalyst concentration on dispersity and initiation efficiency in the particle brush system was similar to that observed in the synthesis of linear PMMA homopolymers. The kinetic study revealed a transition from controlled radical polymerization to a less controlled process at low monomer conversion, when the [CuII/L]0 decreased below about 10 ppm.