Gold-Planet-Silver-Satellite Nanostructures Using RAFT Star Polymer

ACS Macro Lett. 2016 Nov 15;5(11):1227-1231. doi: 10.1021/acsmacrolett.6b00681. Epub 2016 Oct 20.

Abstract

The hierarchical self-assembly of distinct nanoelements into precisely ordered nanostructures requires efficient and flexible fabrication strategies. Herein, we report the precise fabrication of bimetallic gold-planet-silver-satellite nanoparticle-arrangements employing RAFT star polymers as particle linker connecting gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) with judiciously modified surface activity. The strengths of this approach include the adjustability of interparticle distances by tailoring the star polymer molar mass. The prepared nanoassemblies have well-defined structures in which a planet AuNP (∼13 nm) is encompassed by several satellite AgNPs (∼8 nm), thus incorporating the properties of both AuNPs and AgNPs, as confirmed by transmission electron microscopy and UV-vis spectra. Our results highlight the general applicability of RAFT star polymers as a nanosynthesis platform for synthesizing noble metal nanocomposites.