Prior Involvement of Central Motor Drive Does Not Impact Performance and Neuromuscular Fatigue in a Subsequent Endurance Task

Med Sci Sports Exerc. 2022 Oct 1;54(10):1751-1760. doi: 10.1249/MSS.0000000000002965. Epub 2022 May 25.

Abstract

Purpose: This study evaluated whether central motor drive during fatiguing exercise plays a role in determining performance and the development of neuromuscular fatigue during a subsequent endurance task.

Methods: On separate days, 10 males completed three constant-load (80% peak power output), single-leg knee-extension trials to task failure in a randomized fashion. One trial was performed without preexisting quadriceps fatigue (CON), and two trials were performed with preexisting quadriceps fatigue induced either by voluntary (VOL; involving central motor drive) or electrically evoked (EVO; without central motor drive) quadriceps contractions (~20% maximal voluntary contraction (MVC)). Neuromuscular fatigue was assessed via pre-post changes in MVC, voluntary activation (VA), and quadriceps potentiated twitch force ( Qtw,pot ). Cardiorespiratory responses and rating of perceived exertion were also collected throughout the sessions. The two prefatiguing protocols were matched for peripheral fatigue and stopped when Qtw,pot declined by ~35%.

Results: Time to exhaustion was shorter in EVO (4.3 ± 1.3 min) and VOL (4.7 ± 1.5 min) compared with CON (10.8 ± 3.6 min, P < 0.01) with no difference between EVO and VOL. ΔMVC (EVO: -47% ± 8%, VOL: -45% ± 8%, CON: -53% ± 8%), Δ Qtw,pot (EVO: -65% ± 7%, VOL: -59% ± 14%, CON: -64% ± 9%), and ΔVA (EVO: -9% ± 7%, VOL: -8% ± 5%, CON: -7% ± 5%) at the end of the dynamic task were not different between conditions (all P > 0.05). Compared with EVO (10.6 ± 1.7) and CON (6.8 ± 0.8), rating of perceived exertion was higher ( P = 0.05) at the beginning of VOL (12.2 ± 1.0).

Conclusions: These results suggest that central motor drive involvement during prior exercise plays a negligible role on the subsequent endurance performance. Therefore, our findings indicate that peripheral fatigue-mediated impairments are the primary determinants of high-intensity single-leg endurance performance.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electromyography
  • Exercise / physiology
  • Humans
  • Knee
  • Male
  • Muscle Contraction / physiology
  • Muscle Fatigue* / physiology
  • Muscle, Skeletal / physiology
  • Quadriceps Muscle* / physiology