Guiding cell migration in 3D with high-resolution photografting

Sci Rep. 2022 May 23;12(1):8626. doi: 10.1038/s41598-022-11612-y.

Abstract

Multi-photon lithography (MPL) has proven to be a suitable tool to precisely control the microenvironment of cells in terms of the biochemical and biophysical properties of the hydrogel matrix. In this work, we present a novel method, based on multi-photon photografting of 4,4'-diazido-2,2'-stilbenedisulfonic acid (DSSA), and its capabilities to induce cell alignment, directional cell migration and endothelial sprouting in a gelatin-based hydrogel matrix. DSSA-photografting allows for the fabrication of complex patterns at a high-resolution and is a biocompatible, universally applicable and straightforward process that is comparably fast. We have demonstrated the preferential orientation of human adipose-derived stem cells (hASCs) in response to a photografted pattern. Co-culture spheroids of hASCs and human umbilical vein endothelial cells (HUVECs) have been utilized to study the directional migration of hASCs into the modified regions. Subsequently, we have highlighted the dependence of endothelial sprouting on the presence of hASCs and demonstrated the potential of photografting to control the direction of the sprouts. MPL-induced DSSA-photografting has been established as a promising method to selectively alter the microenvironment of cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue*
  • Cell Movement
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Hydrogels* / chemistry
  • Stem Cells

Substances

  • Hydrogels