Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Intermolecular Hydrosilylation of 1,3-Dienes with Prochiral Silanes

Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202205624. doi: 10.1002/anie.202205624. Epub 2022 Jun 9.

Abstract

One of the most straightforward approaches to access chiral silanes is catalytic enantioselective hydrosilylation. Although significant advances have been achieved in enantioselective construction of either a carbon-stereogenic center or a silicon-stereogenic center through enantioselective hydrosilylation, simultaneous establishment of a carbon- and a silicon-stereogenic center in an acyclic molecule through a single intermolecular hydrosilylation remained undeveloped. Herein, an unprecedented cobalt-catalyzed regio-, diastereo- and enantioselective hydrosilylation of 1,3-dienes is presented, enabling construction of a carbon- and a silicon-stereogenic center in a single intermolecular transformation. A wide range of chiral silanes bearing a carbon- and a silicon-stereogenic center were generated in high efficiency and stereoselectivity. Functionalization of the enantioenriched silanes delivered a variety of valuable chiral building blocks that are otherwise difficult to access.

Keywords: 1,3-Dienes; Cobalt; Enantioselective Catalysis; Hydrosilylation; Silicon-Stereogenic Center.