Surface and Bulk Chemistry of Mechanochemically Synthesized Tohdite Nanoparticles

J Am Chem Soc. 2022 Jun 1;144(21):9421-9433. doi: 10.1021/jacs.2c02181. Epub 2022 May 23.

Abstract

Aluminum oxides, oxyhydroxides, and hydroxides are important in different fields of application due to their many attractive properties. However, among these materials, tohdite (5Al2O3·H2O) is probably the least known because of the harsh conditions required for its synthesis. Herein, we report a straightforward methodology to synthesize tohdite nanopowders (particle diameter ∼13 nm, specific surface area ∼102 m2 g-1) via the mechanochemically induced dehydration of boehmite (γ-AlOOH). High tohdite content (about 80%) is achieved upon mild ball milling (400 rpm for 48 h in a planetary ball mill) without process control agents. The addition of AlF3 can promote the crystallization of tohdite by preventing the formation of the most stable α-Al2O3, resulting in the formation of almost phase-pure tohdite. The availability of easily accessible tohdite samples allowed comprehensive characterization by powder X-ray diffraction, total scattering analysis, solid-state NMR (1H and 27Al), N2-sorption, electron microscopy, and simultaneous thermal analysis (TG-DSC). Thermal stability evaluation of the samples combined with structural characterization evidenced a low-temperature transformation sequence: 5Al2O3·H2O → κ-Al2O3 → α-Al2O3. Surface characterization via DRIFTS, ATR-FTIR, D/H exchange experiments, pyridine-FTIR, and NH3-TPD provided further insights into the material properties.