Molecular mechanism of Pulmonary diseases caused by exposure to urban PM2.5 in Chengdu-Chongqing Economic Circle, China

Environ Int. 2022 Jul:165:107292. doi: 10.1016/j.envint.2022.107292. Epub 2022 May 11.

Abstract

Chengdu-Chongqing Economic Circle (CD-CQ Economic Circle) is one of China's four major economic circles and five major urban agglomerations located in Southwest China's Sichuan Basin. The CD-CQ Economic Circle, with its strong economic development and dense population, suffers from severe PM2.5 pollution, which is known to cause chronic and acute respiratory ailments. This study examined the lung disease-related hub genes, functions, and pathways that are affected by PM2.5 in summer and winter in the two central megacities of Chengdu and Chongqing. PM2.5 frequently activates lung disease-associated hub genes, most notably the transcription factor TP53. TP53 interacts with the majority of lung disease-related genes and regulates important and commonly occurring biological functions and pathways, including gland development, aging, reactive oxygen species metabolic process, the response to oxygen levels, and fluid shear stress, among others. Thus, PM2.5 has been shown to target TP53 for regulating lung disease genes/functions/pathways, thereby influencing the occurrence and progression of lung illnesses. Notably, PM2.5 may be associated with small cell carcinoma of the lung due to the high number of lung disease genes, hub genes, critical functions, and pathways enriched in this kind of cancer. These findings shed fresh light on the molecular pathophysiology of PM2.5 pollution on the respiratory system in the CD-CQ Economic Circle and aid in the development of novel techniques for mitigating PM2.5 pollution-associated respiratory illness.

Keywords: Chengdu-Chongqing Economic Circle; PM(2.5); Pulmonary disease; Small cell carcinoma of the lung; TP53.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Air Pollution* / analysis
  • China
  • Cities
  • Environmental Monitoring / methods
  • Humans
  • Lung Diseases* / genetics
  • Particulate Matter / analysis

Substances

  • Air Pollutants
  • Particulate Matter