Boosting Near-Infrared Luminescence of Lanthanide in Cs2 AgBiCl6 Double Perovskites via Breakdown of the Local Site Symmetry

Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202205276. doi: 10.1002/anie.202205276. Epub 2022 Jun 8.

Abstract

Currently, lanthanide (Ln3+ )-doped near-infrared (NIR)-emitting double perovskites (DPs) suffer from low photoluminescence quantum yield (PLQY). Herein, we develop a new class of NIR-emitting DPs based on Ln3+ -doped Cs2 (Na/Ag)BiCl6 . Benefiting from the Na+ -induced breakdown of local site symmetry in the Cs2 AgBiCl6 DPs, effective NIR emissions of Ln3+ are realized through Bi3+ sensitization. Specifically, 7.3-fold and 362.9-fold enhanced NIR emissions of Yb3+ and Er3+ are achieved in Cs2 Ag0.2 Na0.8 BiCl6 DPs relative to those in Na-free Cs2 AgBiCl6 counterparts, respectively. The optimal absolute NIR PLQYs for Yb3+ and Er3+ in Cs2 Ag0.2 Na0.8 BiCl6 DPs are determined to be 19.0 % and 4.3 %, respectively. Raman spectroscopy and first-principles density functional theory calculations verify the sublattice distortion in Cs2 (Na/Ag)BiCl6 DPs via Na+ doping. These findings provide fundamental insights into the design of efficient NIR-emitting Ln3+ -doped DPs for versatile optoelectronic applications.

Keywords: Cs2AgBiCl6; Double Perovskites; Lanthanide Ions; Local Site Symmetry; Near-Infrared Luminescence.