Discrete-velocity Boltzmann model: Regularization and linear stability

Phys Rev E. 2022 Apr;105(4-2):045312. doi: 10.1103/PhysRevE.105.045312.

Abstract

A discrete-velocity Boltzmann model for a nine-velocity lattice is considered. Compared to the conventional lattice Boltzmann (LB) schemes the collisions for the model are defined explicitly. Space and time discretization of the model is based on the collide and stream method; in addition, the regularization of the collision term is proposed. It is demonstrated that the regularized model can be represented as a two-relaxation-time LB model of a special type. The scheme is compared to the Onsager regularized (a specific filtered Galilean invariant model) and recursively regularized LB equations in terms of stability and dissipation properties, and linear stability analysis is performed. Several numerical experiments are carried out: double shear layer, lid-driven cavity flow, and propagation of acoustic and shear waves are considered for different grid resolutions, Mach and Reynolds numbers. It is shown that free parameters in the model corresponding to collision cross sections can be adjusted in such a way that the dissipation and stability properties can be controlled.