3D printed auxetic heel pads for patients with diabetic mellitus

Comput Biol Med. 2022 Jul:146:105582. doi: 10.1016/j.compbiomed.2022.105582. Epub 2022 May 5.

Abstract

More than 422 million people worldwide suffered from diabetes mellitus (DM) in 2021. Diabetic foot is one the most critical complications resultant of DM. Foot ulceration and infection are frequently arisen, which are associated with changes in the mechanical properties of the plantar soft tissues, peripheral arterial disease, and sensory neuropathy. Diabetic insoles are currently the mainstay in reducing the risk of foot ulcers by reducing the magnitude of the pressure on the plantar Here, we propose a novel pressure relieving heel pad based on a circular auxetic re-entrant honeycomb structure by using three-dimensional (3D) printing technology to minimize the pressure on the heel, thus reducing the occurrence of foot ulcers. Finite element models (FEMs) are developed to evaluate the structural changes of the developed circular auxetic structure upon exertion of compressive forces. Moreover, the effects of the internal angle of the re-entrant structure on the peak contact force and the mean pressure acting on the heel as well as the contact area between the heel and the pads are investigated through a finite element analysis (FEA). Based on the result from the validated FEMs, the proposed heel pad with an auxetic structure demonstrates a distinct reduction in the peak contact force (∼10%) and the mean pressure (∼14%) in comparison to a conventional diabetic insole (PU foam). The characterized result of the designed circular auxetic structure not only provides new insights into diabetic foot protection, but also the design and development of various impact resistance products.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diabetes Mellitus* / therapy
  • Diabetic Foot* / therapy
  • Diabetic Neuropathies*
  • Finite Element Analysis
  • Heel
  • Humans
  • Printing, Three-Dimensional
  • Shoes