Fast Approximate Quantification of Endovascular Stent Graft Displacement Forces in the Bovine Aortic Arch Variant

J Endovasc Ther. 2023 Oct;30(5):756-768. doi: 10.1177/15266028221095403. Epub 2022 May 19.

Abstract

Purpose: Displacement forces (DFs) identify hostile landing zones for stent graft deployment in thoracic endovascular aortic repair (TEVAR). However, their use in TEVAR planning is hampered by the need for time-expensive computational fluid dynamics (CFD). We propose a novel fast-approximate computation of DFs merely exploiting aortic arch anatomy, as derived from the computed tomography (CT) and a measure of central aortic pressure.

Materials and methods: We tested the fast-approximate approach against CFD gold-standard in 34 subjects with the "bovine" aortic arch variant. For each dataset, a 3-dimensional (3D) model of the aortic arch lumen was reconstructed from computed tomography angiography and CFD then employed to compute DFs within the aortic proximal landing zones. To quantify fast-approximate DFs, the wall shear stress contribution to the DF was neglected and blood pressure space-distribution was averaged on the entire aortic wall to reliably approximate the patient-specific central blood pressure. Also, DF values were normalized on the corresponding proximal landing zone area to obtain the equivalent surface traction (EST).

Results: Fast-approximate approach consistently reflected (r2=0.99, p<0.0001) the DF pattern obtained by CFD, with a -1.1% and 0.7° bias in DFs magnitude and orientation, respectively. The normalized EST progressively increased (p<0.0001) from zone 0 to zone 3 regardless of the type of arch, with proximal landing zone 3 showing significantly greater forces than zone 2 (p<0.0001). Upon DF normalization to the corresponding aortic surface, fast-approximate EST was decoupled in blood pressure and a dimensionless shape vector (S) reflecting aortic arch morphology. S showed a zone-specific pattern of orientation and proved a valid biomechanical blueprint of DF impact on the thoracic aortic wall.

Conclusion: Requiring only a few seconds and quantifying clinically relevant biomechanical parameters of proximal landing zones for arch TEVAR, our method suits the real preoperative decision-making process. It paves the way toward analyzing large population of patients and hence to define threshold values for a future patient-specific preoperative TEVAR planning.

Keywords: bovine aortic arch variant; computational fluid dynamics; displacement forces; endovascular planning; thoracic aorta endovascular repair.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aorta, Thoracic / diagnostic imaging
  • Aorta, Thoracic / surgery
  • Blood Vessel Prosthesis
  • Blood Vessel Prosthesis Implantation* / adverse effects
  • Endovascular Procedures* / adverse effects
  • Endovascular Procedures* / methods
  • Humans
  • Stents
  • Treatment Outcome