Sculpting a Uniquely Reactive Cysteine Residue for Site-Specific Antibody Conjugation

Bioconjug Chem. 2022 Jun 15;33(6):1192-1200. doi: 10.1021/acs.bioconjchem.2c00146. Epub 2022 May 18.

Abstract

Catalytic antibody 38C2 and its humanized version h38C2 harbor a uniquely reactive lysine at the bottom of a 11 Å deep pocket that permits site-specific conjugation of β-diketone-, β-lactam-, and heteroaryl methylsulfonyl-functionalized small and large molecules. Various dual variable domain formats pair a tumor-targeting antibody with h38C2 to enable precise, fast, and stable assembly of antibody-drug conjugates (ADCs). Here, we expand the scope of this ADC assembly strategy by mutating h38C2's reactive lysine to a cysteine. X-ray crystallography of this point mutant, h38C2_K99C, confirmed a deeply buried unpaired cysteine. Probing h38C2_K99C with maleimide, monobromomaleimide, and dibromomaleimide derivatives of a fluorophore revealed highly disparate conjugation efficiencies and stabilities. Dibromomaleimide emerged as a suitable electrophile for the precise, fast, efficient, and stable assembly of ADCs with the h38C2_K99C module. Mass spectrometry indicated the presence of a thio-monobromomaleimide linkage which was further supported by in silico docking studies. Using a dibromomaleimide derivative of the highly potent tubulin polymerization inhibitor monomethyl auristatin F, h38C2_K99C-based ADCs were found to be as potent as h38C2-based ADCs and afford a new assembly route for ADCs with single and dual payloads.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal / chemistry
  • Cysteine* / chemistry
  • Immunoconjugates* / chemistry
  • Lysine / chemistry

Substances

  • Antibodies, Monoclonal
  • Immunoconjugates
  • Lysine
  • Cysteine