Low divergent MeV-class proton beam with micrometer source size driven by a few-cycle laser pulse

Sci Rep. 2022 May 16;12(1):8100. doi: 10.1038/s41598-022-12240-2.

Abstract

Spatial characterization of 0.5 MeV proton beam, driven by 12 fs, 35 mJ, 1019 W/cm2 intense laser-foil interaction is presented. The accelerated proton beam has been applied to obtain a high-resolution, point-projection static radiograph of a fine mesh using a CR-39 plate. The reconstruction of mesh edge blurring and particle ray tracing suggests that these protons have an effective source size (FWHM) of just 3.3 ± 0.3 µm. Furthermore, the spatial distribution of the proton beam recorded on the CR-39 showed that the divergence of these particles is less than 5-degree (FWHM). The low divergence and small source size of the proton beam resulted in an ultralow transverse emittance of 0.00032 π-mm-mrad, which is several orders of magnitude smaller than that of a conventional accelerator beam.