Side-Chain Density Driven Morphology Transition in Brush-Linear Diblock Copolymers

ACS Macro Lett. 2022 Apr 19;11(4):468-474. doi: 10.1021/acsmacrolett.2c00068. Epub 2022 Mar 21.

Abstract

We report the synthesis and self-assembly of brush-linear diblock copolymers with variable side-chain length and density. Poly(pentafluorophenyl acrylate-g-ethylene glycol)-b-polystyrene ((PPFPA-g-PEG)-b-PS) brush-linear diblock copolymers are prepared by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization of PPFPA and PS, followed by postpolymerization reaction between the precursor PPFPA-b-PS diblock copolymer and amine-functionalized PEG. By controlling the PEG chain length and the degree of substitution, we obtained brush-linear diblock copolymers with different side-chain lengths and densities. The solid-state morphologies of the diblocks are then examined by small-angle X-ray scattering (SAXS). At low PEG side-chain density, the segregation of PEG and PS away from PPFPA leads to the formation of PEG and PS lamellar domains with PPFPA in the interface. At high PEG side-chain density, the segregation is between the PPFPA-g-PEG brush block and the PS linear block, and the domain morphology is determined by the composition of the brush block. A partial experimental phase diagram is presented, and it illustrates the importance of both side-chain length and density on the microdomain morphology of brush-linear diblock copolymers.