Effect of acellular nerve scaffold containing human umbilical cord-derived mesenchymal stem cells on nerve repair and regeneration in rats with sciatic nerve defect

Ann Transl Med. 2022 Apr;10(8):483. doi: 10.21037/atm-22-1578.

Abstract

Background: The aim of the present study was to investigate the effect of acellular nerve scaffold (ANS) containing human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on nerve repair and regeneration in rats with sciatic nerve defect.

Methods: Sciatic nerve trunks were removed from 6 female Sprague-Dawley (SD) rats, and ANS was prepared by lyophilization + enzymatic method and divided into A, B, C, D and E groups according to different treatment times. hUC-MSCs were isolated from the collected umbilical cords and cultured, and then ANS-hUC-MSCs complexes were made. The other 24 adult female SD rats were randomly divided into the control, autograft, ANS, and ANS-hUC-MSCs groups, and a rat model of sciatic nerve defect was established. Hematoxylin-eosin (HE) staining, Luxol fast blue (LFB) staining, Masson staining, and scanning electron microscopy were used to observe the morphology and tissue structure of ANS. The performance of ANS was evaluated by mechanical detection, and hydroxyproline (HYP) content was evaluated using a biochemical kit. Flow cytometry was adopted to detect the levels of hUC-MSCs surface antigens CD29, CD44, and CD34, as well as electrophysiological detection and muscle wet weight recovery rate for measuring rat muscle performance.

Results: ANS was prepared according to group A method and had good mechanical properties, with less residues of cells and myelin, and higher HYP content, indicating that this scaffold had the best performance. ANS-hUC-MSCs significantly reduced myelin injury in the sciatic nerve, and increased axonal regeneration, effectively improving sciatic nerve injury in rats. In addition, ANS-hUC-MSCs significantly increased compound muscle action potential (CMAP), nerve conduction velocity (NCV), and muscle wet weight, and reduced muscle atrophy.

Conclusions: ANS containing hUC-MSCs can promote nerve repair and regeneration in rats with sciatic nerve defects.

Keywords: Sciatic nerve defect; acellular nerve scaffold (ANS); human umbilical cord-derived mesenchymal stem cells (hUC-MSCs); repair and regeneration.