Optimization of Typha Fibre Extraction and Properties for Bio-Composite Applications Using Desirability Function Analysis

Polymers (Basel). 2022 Apr 21;14(9):1685. doi: 10.3390/polym14091685.

Abstract

The effect of extraction time, temperature, and alkali concentration on the physical and mechanical properties of cattail (Typha latifolia L.) fibres were investigated using five levels of time (4, 6, 8, 10, and 12 h), four levels of temperature (70, 80, 90, and 95 °C), and three levels of NaOH concentration (4, 7, 10%, w/v) in a 3 × 4 × 5 factorial experimental design. The extraction parameters were optimized for bio-composite application using a desirability function analysis (DFA), which determined that the optimum extraction time, temperature and NaOH concentration were 10 h, 90 °C, and 7%, respectively. A sensitivity analysis for optimal treatment conditions confirmed that the higher overall desirability does not necessarily mean a better solution. However, the analysis showed that the majority of optimum settings for time, temperature, and concentration of NaOH found in the sensitivity analysis matched with the optimum conditions determined by DFA, which confirmed the validity of the optimum treatment conditions.

Keywords: Typha fibre; bio-composites; desirability function analysis (DFA); optimum extraction bath parameters; waste biomass fibre.