DFT Calculations of 31P NMR Chemical Shifts in Palladium Complexes

Molecules. 2022 Apr 21;27(9):2668. doi: 10.3390/molecules27092668.

Abstract

In this study, comparative analysis of calculated (GIAO method, DFT level) and experimental 31P NMR shifts for a wide range of model palladium complexes showed that, on the whole, the theory reproduces the experimental data well. The exceptions are the complexes with the P=O phosphorus, for which there is a systematic underestimation of shielding, the value of which depends on the flexibility of the basis sets, especially at the geometry optimization stage. The use of triple-ζ quality basis sets and additional polarization functions at this stage reduces the underestimation of shielding for such phosphorus atoms. To summarize, in practice, for the rapid assessment of 31P NMR shifts, with the exception of the P=O type, a simple PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d); Pd(SDD)} approximation is quite acceptable (RMSE = 8.9 ppm). Optimal, from the point of view of "price-quality" ratio, is the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 8.0 ppm) and the PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 6.9 ppm) approaches. In all cases, a linear scaling procedure is necessary to minimize systematic errors.

Keywords: DFT calculations; NMR chemical shifts; palladium complexes; phosphorus.

MeSH terms

  • Density Functional Theory
  • Magnetic Resonance Imaging*
  • Magnetic Resonance Spectroscopy / methods
  • Palladium*
  • Phosphorus

Substances

  • Phosphorus
  • Palladium