Metformin-induced downregulation of c-Met is a determinant of sensitivity in MDA-MB-468 breast cancer cells

Biochem Biophys Res Commun. 2022 Jul 12:613:100-106. doi: 10.1016/j.bbrc.2022.04.139. Epub 2022 May 2.

Abstract

Metformin, the widely used anti-diabetic drug, is emerging as a promising anti-cancer agent. However, response variation among different tumors remains a significant challenge. Hence, identification of the factors that determine metformin sensitivity is of greatest significance for its clinical implementation. In this study, we showed that MDA-MB-468 cells were most sensitive among the five breast cancer cell lines tested. We found that metformin-induced inhibition of MDA-MB-468 cells was correlated with downregulation of c-Met at both protein and mRNA levels. To understand the functional significance of c-Met downregulation in metformin-mediated tumor inhibition, we established control and c-Met overexpressing sublines of MDA-MB-468 cells (468/C and 468/Met) using lentiviral expression system. We demonstrated that overexpression of c-Met significantly attenuated metformin induced inhibition of MDA-MB-468 cells. Metformin-induced inhibition of ALDH1+ cells, which are enriched with cancer stem cells, was also abrogated in 468/Met cells as compared to 468/C cells. Signal transduction analysis of the paired cell lines indicated that c-Met-induced activation of STAT3 and AKT1, and upregulation of Gab1 are related to c-Met-modulated metformin responsiveness. These findings highlight c-Met as a potential key regulator of metformin-mediated inhibition of proliferation and stemness of breast cancer cells, indicating that c-Met overexpression may be a critical factor contributing to metformin resistance. The data also suggest that combination of metformin with c-Met inhibitors could be a useful strategy to improve metformin-mediated anti-cancer efficacies in breast cancer treatment.

Keywords: ALDH; Akt; Breast cancer; Metformin; STAT3; c-Met.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / genetics
  • Breast Neoplasms* / metabolism
  • Cell Line, Tumor
  • Cell Proliferation
  • Down-Regulation
  • Female
  • Humans
  • Metformin* / pharmacology
  • Metformin* / therapeutic use

Substances

  • Antineoplastic Agents
  • Metformin