The solitary nucleus connectivity to key autonomic regions in humans

Eur J Neurosci. 2022 Jul;56(2):3938-3966. doi: 10.1111/ejn.15691. Epub 2022 Jun 21.

Abstract

The nucleus tractus solitarius (NTS) is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centres for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n = 8), subcortical (n = 6), cerebellar (n = 2) and cortical (n = 5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e. Granger causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (1) the NTS predominantly processes afferent input and (2) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role composed of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.

Keywords: connectome; interoceptive; laterality; magnetic resonance imaging; medulla oblongata; viscero-sensory.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Stem
  • Connectome*
  • Humans
  • Medulla Oblongata / physiology
  • Solitary Nucleus* / physiology