P3HT-based visible-light organic photodetectors using PEI/PAA multilayers as a p-type buffer layer

RSC Adv. 2019 Nov 13;9(64):37180-37187. doi: 10.1039/c9ra08568h.

Abstract

A low leakage current is critical for achieving organic photodetectors (OPDs) with high detectivity. The insertion of buffer layers is an effective approach for reducing the reverse-biased leakage current. In this study, polyelectrolyte multilayers comprising polyethyleneimine (PEI) and polyacrylic acid (PAA) were introduced by a spin-assisted layer-by-layer technique into an OPD as a p-type buffer layer. Although PEI/PAA multilayers are insulators, when used as a buffer layer in our device, they suppressed the leakage current and also provided a high photocurrent due to the light-assisted tunneling effect. The prepared device configuration was ITO/(PEI/PAA)2/P3HT:PC60BM/Yb/Al. The performances of the OPDs were investigated by measuring the current-voltage characteristics, external quantum efficiency, and transient photocurrent. In addition, the operating mechanism of the OPDs was confirmed by impedance analysis. The device comprising (PEI/PAA)2 showed a specific detectivity of 3.11 × 1012 Jones and a bandwidth of 103.2 kHz at -1 V and 525 nm. This performance is a numerical value that can be used in devices such as a line scan camera. In addition, because this device is fabricated by a low-temperature solution process, flexible and large-area substrates can be used.