A low-cost and scalable process for harvesting microalgae using commercial-grade flocculant

RSC Adv. 2019 Nov 28;9(67):39011-39024. doi: 10.1039/c9ra08072d. eCollection 2019 Nov 27.

Abstract

A low-cost and scalable harvesting process was demonstrated for Chlorella sp. FC2 IITG, which offered an improved process economy for the production of a microalgal biomass feedstock via (i) the utilization of a cheaper commercial grade chemical flocculant; (ii) the recycling of post-harvested nutrient-rich spent water for the successive growth of the FC2 cells and (iii) the modulation of the flocculant dose, resulting in the non-requirement of a pH adjustment of the spent water and separate inoculum development step. Ferrous sulphate and ferric chloride were screened from a pool of four commercial grade flocculants, resulting in high harvesting efficiencies of 99.83% and 99.93% at the lower flocculant doses (g of flocculant g of dry biomass-1) of 2.5 and 3, respectively. The effect of the recycled nutrient-rich spent water and treated non-flocculated microalgal cells after harvesting was evaluated for the growth performance of the FC2 cells in six successive batches. It was found that ferrous sulphate was superior over ferric chloride in terms of the recyclability of the spent water for more number of batches, offering similar growth kinetics and nutrient recovery efficiency as compared with that of the control sample. The scale-up feasibility of the harvesting process was evaluated with a 5 L photobioreactor under indoor conditions and a 350 L open raceway pond under outdoor conditions with a modulated flocculant dose of 1.5 g ferrous sulphate. g dry biomass-1. The harvesting cost of 1 kg biomass using commercial grade ferrous sulphate was estimated to be in the range of 0.17-0.3 USD and was significantly lower as compared to that of analytical grade ferrous sulphate.