Immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal

RSC Adv. 2019 Dec 13;9(70):41351-41360. doi: 10.1039/c9ra05525h. eCollection 2019 Dec 9.

Abstract

In this study, immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal was investigated. Three redox mediators (RMs), namely, 2-methyl-1,4-naphthoquinone (ME), anthraquinone (AQ) and 1-dichloroanthraquinone (1-AQ) were catalyzed to reduce nitrate to only nitrite by denitrification to integrate with the anammox process for nitrogen removal. First, our experimental results showed that there were 35.8, 42.2 and 53.0 mg-N L-1 nitrite accumulation values with the addition of ME, AQ and 1-AQ, respectively, at the dose of 75 µM by the denitrification process at C/N = 2, which were 25.6%, 48.2% and 86.1% higher than that of the control without the addition of any RMs. Nitrate reductase activities were higher than that of nitrite reductase affected by RMs, which was the main reason for nitrite accumulation and further maintenance of the anammox process. Second, owing to the stable nitrite production by the partial denitrifying biomass with the addition of 1-AQ, the nitrogen removal rate of the reactor that integrated the partial denitrification and anammox process reached 1788.36 g-N m-3 d-1 only using ammonia and nitrate as the influent nitrogen resource in the long-term operation. Third, the 16S rDNA sequencing results demonstrated that Yersinia frederiksenii and Thauera were the primary groups of the denitrifying biomass, which were considered the dominant partial denitrification species.