Optimization of lithium content in LiFePO4 for superior electrochemical performance: the role of impurities

RSC Adv. 2018 Jan 3;8(2):1140-1147. doi: 10.1039/c7ra10112k. eCollection 2018 Jan 2.

Abstract

Carbon coated Li x FePO4 samples with systematically varying Li-content (x = 1, 1.02, 1.05, 1.10) have been synthesized via a sol-gel route. The Li : Fe ratios for the as-synthesized samples is found to vary from ∼0.96 : 1 to 1.16 : 1 as determined by the proton induced gamma emission (PIGE) technique (for Li) and ICP-OES (for Fe). According to Mössbauer spectroscopy, sample Li1.05FePO4 has the highest content (i.e., ∼91.5%) of the actual electroactive phase (viz., crystalline LiFePO4), followed by samples Li1.02FePO4, Li1.1FePO4 and LiFePO4; with the remaining content being primarily Fe-containing impurities, including a conducting FeP phase in samples Li1.02FePO4 and Li1.05FePO4. Electrodes based on sample Li1.05FePO4 show the best electrochemical performance in all aspects, retaining ∼150 mA h g-1 after 100 charge/discharge cycles at C/2, followed by sample Li1.02FePO4 (∼140 mA h g-1), LiFePO4 (∼120 mA h g-1) and Li1.10FePO4 (∼115 mA h g-1). Furthermore, the electrodes based on sample Li1.05FePO4 retain ∼107 mA h g-1 even at a high current density of 5C. Impedance spectra indicate that electrodes based on sample Li1.05FePO4 possess the least charge transfer resistance, plausibly having influence from the compositional aspects. This low charge transfer resistance is partially responsible for the superior electrochemical behavior of that specific composition.