Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma

Biophys J. 2022 Oct 4;121(19):3706-3718. doi: 10.1016/j.bpj.2022.05.009. Epub 2022 May 10.

Abstract

Glioblastoma multiforme (GBM) is the most aggressive and prevalent form of brain cancer, with an expected survival of 12-15 months following diagnosis. GBM affects the glial cells of the central nervous system, which impairs regular brain function including memory, hearing, and vision. GBM has virtually no long-term survival even with treatment, requiring novel strategies to understand disease progression. Here, we identified a somatic mutation in OR2T7, a G-protein-coupled receptor (GPCR), that correlates with reduced progression-free survival for glioblastoma (log rank p-value = 0.05), suggesting a possible role in tumor progression. The mutation, D125V, occurred in 10% of 396 glioblastoma samples in The Cancer Genome Atlas, but not in any of the 2504 DNA sequences in the 1000 Genomes Project, suggesting that the mutation may have a deleterious functional effect. In addition, transcriptome analysis showed that the p38α mitogen-activated protein kinase (MAPK), c-Fos, c-Jun, and JunB proto-oncogenes, and putative tumor suppressors RhoB and caspase-14 were underexpressed in glioblastoma samples with the D125V mutation (false discovery rate < 0.05). Molecular modeling and molecular dynamics simulations have provided preliminary structural insight and indicate a dynamic helical movement network that is influenced by the membrane-embedded, cytofacial-facing residue 125, demonstrating a possible obstruction of G-protein binding on the cytofacial exposed region. We show that the mutation impacts the "open" GPCR conformation, potentially affecting Gα-subunit binding and associated downstream activity. Overall, our findings suggest that the Val125 mutation in OR2T7 could affect glioblastoma progression by downregulating GPCR-p38 MAPK tumor-suppression pathways and impacting the biophysical characteristics of the structure that facilitates Gα-subunit binding. This study provides the theoretical basis for further experimental investigation required to confirm that the D125V mutation in OR2T7 is not a passenger mutation. With validation, the aforementioned mutation could represent an important prognostic marker and a potential therapeutic target for glioblastoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Neoplasms* / genetics
  • Brain Neoplasms* / pathology
  • Caspase 14 / genetics
  • Caspase 14 / metabolism
  • Gene Expression Regulation, Neoplastic
  • Glioblastoma* / genetics
  • Glioblastoma* / pathology
  • Humans
  • Mitogen-Activated Protein Kinase 14* / genetics
  • Mitogen-Activated Protein Kinase 14* / metabolism
  • Prognosis

Substances

  • Mitogen-Activated Protein Kinase 14
  • Caspase 14