WRKY74 regulates cadmium tolerance through glutathione-dependent pathway in wheat

Environ Sci Pollut Res Int. 2022 Sep;29(45):68191-68201. doi: 10.1007/s11356-022-20672-6. Epub 2022 May 10.

Abstract

Cadmium (Cd) is a toxic heavy metal to plants and human health. Ascorbate (ASA)-glutathione (GSH) synthesis pathway plays key roles in Cd detoxification, while its molecular regulatory mechanism remains largely unknown, especially in wheat. Here, we found a WRKY transcription factor-TaWRKY74, and its function in wheat Cd stress is not clear in previous studies. The expression levels of TaWRKY74 were significantly induced by Cd stress. Compared to control, the activities of GST, GR, or APX were significantly increased by 1.55-, 1.43-, or 1.75-fold and 1.63-, 2.65-, or 2.30-fold in shoots and roots of transiently TaWRKY74-silenced wheat plants under Cd stress. Similarly, the contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), GSH, or Cd were also significantly increased by 2.39- or 1.25-fold, 1.54- or 1.20-fold, and 1.34- or 5.94-fold in shoots or roots in transiently TaWRKY74-silenced wheat plants, while ASA content was decreased by 47.4 or 43.3% in shoots, 10.7 or 6.5% in roots in these silenced wheat plants, respectively. Moreover, the expression levels of GSH, GPX, GR, DHAR, MDHAR, and APX genes, which are involved in ASA-GSH synthesis, were separately induced by 2.42-, 2.16-, 3.28-, 2.08-, 1.92-, and 2.23-fold in shoots, or by 10.69-, 3.33-, 3.26-, 1.81-, 16.53-, and 3.57-fold in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants, respectively. However, the expression levels of TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1, and TaIRT1 metal transporters genes were decreased by 21.2-76.3% (56.6%, 59.2%, 76.3%, 53.6%, 35.8%, and 21.2%) in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants. Taken together, our results suggested that TaWRKY74 alleviated Cd toxicity in wheat by affecting the expression of ASA-GSH synthesis genes and suppressing the expression of Cd transporter genes, and further affecting Cd uptake and translocation in wheat plants.

Keywords: ASA-GSH synthesis; Cd stress; Metal transporter genes; TaWRKY74; Triticum aestivum L..

MeSH terms

  • Antioxidants / metabolism
  • Ascorbic Acid / metabolism
  • Cadmium* / metabolism
  • Glutathione / metabolism
  • Humans
  • Hydrogen Peroxide / metabolism
  • Malondialdehyde / metabolism
  • Transcription Factors / metabolism
  • Triticum* / genetics
  • Triticum* / metabolism

Substances

  • Antioxidants
  • Transcription Factors
  • Cadmium
  • Malondialdehyde
  • Hydrogen Peroxide
  • Glutathione
  • Ascorbic Acid