Metal Ion-Directed Functional Metal-Phenolic Materials

Chem Rev. 2022 Jul 13;122(13):11432-11473. doi: 10.1021/acs.chemrev.1c01042. Epub 2022 May 10.

Abstract

Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkalies
  • Coordination Complexes* / chemistry
  • Ions
  • Materials Science
  • Metals* / chemistry
  • Phenols

Substances

  • Alkalies
  • Coordination Complexes
  • Ions
  • Metals
  • Phenols