First report of green mold disease caused by Penicillium citrinum on Dictyophora rubrovalvata in China

Plant Dis. 2022 May 10. doi: 10.1094/PDIS-10-21-2291-PDN. Online ahead of print.

Abstract

Dictyophora rubrovolvata is a saprophytic mushroom widely cultivated in China, including Guizhou Province for its high nutritional, medicinal, and economical values (Chen et al. 2021). In May 2021, green mold disease was observed on the fruiting bodies of D. rubrovolvata, causing its death or preventing it from forming a sporocarp, in an indoor-production facility at Asuo village, Baiyun District Guiyang city, Guizhou Province, China (26°73'51" N, 106°72'88" E). The disease incidence was 60%-70% in the affected 1.33-ha growing area, causing a serious economic loss. To identify the causal agent, a total of 15 samples with symptomatic symptoms were collected. Small pieces (5 mm × 5 mm) were cut from the diseased tissues, surface sterilized in 0.4% NaClO for 5 min, washed three times with sterilized water, placed on potato dextrose agar (PDA) medium, and incubated at 24 °C for 7 days. Twenty-one pure cultures were obtained by single-spore isolation method. The colonies were initially white but after seven days as conidia developed they turned green. Hyphae were hyaline and guttulate. Conidiophores were verrucose stipes, triverticulate, and phialides flask shaped. Conidia were smooth and pale green, with subglobose to globose shape measuring 2.0-2.5 × 1.8-2.5 µm (n=50). Based on these morphological characteristics, the isolates matched the description of the genus Penicillium (Visagie et al. 2014). To confirm the identity, DNA of five representative isolates (QS001, QS005, QS008, QS015, QS017) was extracted according to the manufacturer's instructions (Biomiga Fungal DNA Extraction Kit; CA, USA). Afterwards, PCR was performed to amplify ITS region, calmodulin and β-tubulin genes using primer pairs ITS1/ITS4 (White et al. 1990), CMD5/CMD6 (Glass et al. 1995), and Bt2a/Bt2b (Hong et al. 2006), respectively. BLASTN analysis of these sequences showed the best matches with Penicillium citrinum CBS 139.45 (ITS region: 98.60% (493/500 bp) identity to accession MH856132.1; CMD: 99.79% (469/470 bp) identity to accession MN969245.1; β-tubulin:100% (407/407 bp) identity to accession GU944545.1). Representative sequences of the sequenced DNA regions were deposited in GenBank (ITS region: OK446552; CMD: OK492612; β-tubulin: OK482677). Furthermore, a phylogenetic tree was constructed with MEGA 7 based on the concatenated sequences. Koch's postulates were met to confirm the pathogenicity of the representative isolate (QS001) on D. rubrovolvata. Six discs (5mm×5mm) from actively growing P. citrinum QS001 colonies (5-day-old) were placed on six fruiting bodies of D. rubrovolvata (5-month-old). Mock inoculations were performed using PDA discs only without any fungus. The inoculation sites were wrapped with a sterilized 200-μm nylon mesh. All fruiting bodies were incubated at 23°C ± 2°C under a 0-h/24-h photoperiod and 80% relative humidity (RH) after inoculation. After 14 days, green mold was observed on all P. citrinum QS001 inoculated mushrooms. In contrast, no disease was observed in mock inoculated group. The disease assays were repeated three times. P. citrinum QS001 was isolated from all inoculated D. rubrovolvata and verified via the molecular analysis mentioned above. To the best of our knowledge, this is the first report that P. citrinum causes green mold on D. rubrovalvata in China and further studies should focus on managing this disease to prevent any disease outbreaks.

Keywords: Dictyophora rubrovalvata; Penicillium citrinum; green mold.